Halaman

Sabtu, 08 Desember 2012

RANGKAKAIAN LISTRIK AC


ANALISIS RANGKAIAN AC
Hukum Ohm
Jika sebuah impedansi dilewati oleh sebuah arus maka pada kedua ujung impedansi
tersebut akan muncul beda potensial, atau Hukum Ohm menyatakan bahwa tegangan
melintasi berbagai jenis bahan pengantar adalah berbanding lurus dengan arus yang
mengalir melalui bahan tersebut.
Secara matematis :
V = I.Z
Hukum Kirchoff I / Kirchoff’s Current Law (KCL)
Jumlah arus yang memasuki suatu percabangan atau node atau simpul samadengan arus
yang meninggalkan percabangan atau node atau simpul, dengan kata lain jumlah aljabar
semua arus yang memasuki sebuah percabangan atau node atau simpul samadengan nol.
Secara matematis :
Σ Arus pada satu titik percabangan = 0
Σ Arus yang masuk percabangan = Σ Arus yang keluar percabangan
Hukum Kirchoff II / Kirchoff’s Voltage Law (KVL)
Jumlah tegangan pada suatu lintasan tertutup samadengan nol, atau penjumlahan
tegangan pada masing-masing komponen penyusunnya yang membentuk satu lintasan
tertutup akan bernilai samadengan nol.

Secara matematis :
ΣV = 0
Contoh latihan :
1. Tentukan nilai i !
jawaban:
a. dengan phasor

2. Tentukan nilai V !
     jawaban:
     a. dengan phasor

Analisis Node
Analisis node berprinsip pada Hukum Kirchoff I/ KCL dimana jumlah arus yang masuk
dan keluar dari titik percabangan akan samadengan nol, dimana tegangan merupakan
parameter yang tidak diketahui. Atau analisis node lebih mudah jika pencatunya
semuanya adalah sumber arus. Analisis ini dapat diterapkan pada sumber searah/ DC
maupun sumber bolak-balik/ AC.
Beberapa hal yang perlu diperhatikan pada analisis node, yaitu :
􀂉 Tentukan node referensi sebagai ground/ potensial nol.
􀂉 Tentukan node voltage, yaitu tegangan antara node non referensi dan ground.
􀂉 Asumsikan tegangan node yang sedang diperhitungkan lebih tinggi daripada
tegangan node manapun, sehingga arah arus keluar dari node tersebut positif.
􀂉 Jika terdapat N node, maka jumlah node voltage adalah (N-1). Jumlah node voltage
ini akan menentukan banyaknya persamaan yang dihasilkan.
􀂉 Analisis node mudah dilakukan bila pencatunya berupa sumber arus. Apabila pada
rangkaian tersebut terdapat sumber tegangan, maka sumber tegangan tersebut
diperlakukan sebagai supernode, yaitu menganggap sumber tegangan tersebut
dianggap sebagai satu node.

Contoh latihan :
1. Tentukan nilai V dengan analisis node !



2. Tentukan nilai V dengan analisis node !

Analisis Mesh atau Arus Loop
Arus loop adalah arus yang dimisalkan mengalir dalam suatu loop (lintasan tertutup).
Arus loop sebenarnya tidak dapat diukur (arus permisalan).
Berbeda dengan analisis node, pada analisis ini berprinsip pada Hukum Kirchoff II/
KVL dimana jumlah tegangan pada satu lintasan tertutup samadengan nol atau arus
merupakan parameter yang tidak diketahui. Analisis ini dapat diterapkan pada rangkaian
sumber searah/ DC maupun sumber bolak-balik/ AC.
Hal-hal yang perlu diperhatikan :
􀂉 Buatlah pada setiap loop arus asumsi yang melingkari loop. Pengambilan arus loop
terserah kita yang terpenting masih dalam satu lintasan tertutup. Arah arus dapat
searah satu sama lain ataupun berlawanan baik searah jarum jam maupun
berlawanan dengan arah jarum jam.
􀂉 Biasanya jumlah arus loop menunjukkan jumlah persamaan arus yang terjadi.
􀂉 Metoda ini mudah jika sumber pencatunya adalah sumber tegangan.
􀂉 Jumlah persamaan = Jumlah cabang – Jumlah junction + 1
􀂉 Apabila ada sumber arus, maka diperlakukan sebagai supermesh. Pada supermesh,
pemilihan lintasan menghindari sumber arus karena pada sumber arus tidak
diketahui besar tegangan terminalnya.
Contoh latihan :
1. Tentukan nilai V dengan analisis mesh !


Analisis Arus Cabang
Arus cabang adalah arus yang benar-benar ada (dapat diukur) yang mengalir pada suatu
cabang. Artinya arus cabang adalah arus yang sebenarnya mengalir pada percabangan
tersebut.
Arti cabang :
􀂉 Mempunyai satu elemen rangkaian
􀂉 Bagian rangkaian dengan dua terminal dengan arus yang sama
􀂉 Jumlah persamaan = Jumlah arus cabang yang ada


Teorema Superposisi
Pada teorema ini hanya berlaku untuk rangkaian yang bersifat linier, dimana rangkaian
linier adalah suatu rangkaian dimana persamaan yang muncul akan memenuhi jika y =
kx, dimana k = konstanta dan x = variabel.
Dalam setiap rangkaian linier dengan beberapa buah sumber tegangan/ sumber arus
dapat dihitung dengan cara :
Menjumlah aljabarkan tegangan/ arus yang disebabkan tiap sumber independent/
bebas yang bekerja sendiri, dengan semua sumber tegangan/ arus independent/ bebas
lainnya diganti dengan tahanan dalamnya.
Pengertian dari teorema diatas bahwa jika terdapat n buah sumber bebas maka dengan
teorema superposisi samadengan n buah keadaan rangkaian yang dianalisis, dimana
nantinya n buah keadaan tersebut akan dijumlahkan. Jika terdapat beberapa buah
sumber tak bebas maka tetap saja teorema superposisi menghitung untuk n buah
keadaan dari n buah sumber yang bebasnya.
Rangkaian linier tentu tidak terlepas dari gabungan rangkaian yang mempunyai sumber
independent atau sumber bebas, sumber dependent / sumber tak bebas linier (sumber
dependent arus/ tegangan sebanding dengan pangkat satu dari tegangan/ arus lain, atau
sebanding dengan jumlah pangkat satu besaran-besaran tersebut) dan elemen resistor (
R ), induktor ( L ), dan kapasitor ( C ).



Teorema Thevenin
Pada teorema ini berlaku bahwa :
Suatu rangkaian listrik dapat disederhanakan dengan hanya terdiri dari satu buah
sumber tegangan yang dihubungserikan dengan sebuah impedansi ekivelennya pada
dua terminal yang diamati.
Tujuan sebenarnya dari teorema ini adalah untuk menyederhanakan analisis rangkaian,
yaitu membuat rangkaian pengganti yang berupa sumber tegangan yang dihubungkan
seri dengan suatu impedansi ekivalennya.

Cara memperoleh impedansi penggantinya (Zth) adalah dengan mematikan atau menon
aktifkan semua sumber bebas pada rangkaian linier A (untuk sumber tegangan tahanan
dalamnya = 0 atau rangkaian short circuit dan untuk sumber arus tahanan dalamnya = ∞
atau rangkaian open circuit).
Jika pada rangkaian tersebut terdapat sumber dependent atau sumber tak bebasnya,
maka untuk memperoleh impedansi penggantinya, terlebih dahulu kita mencari arus
hubung singkat (isc), sehingga nilai resistansi penggantinya (Zth) didapatkan dari nilai
tegangan pada kedua terminal tersebut yang di-open circuit dibagi dengan arus pada
kedua terminal tersebut yang di- short circuit .
Langkah-langkah penyelesaian dengan teorema Thevenin :
1. Cari dan tentukan titik terminal a-b dimana parameter yang ditanyakan.
2. Lepaskan komponen pada titik a-b tersebut, open circuit kan pada terminal a-b
kemudian hitung nilai tegangan dititik a-b tersebut (Vab = Vth).
3. Jika semua sumbernya adalah sumber bebas, maka tentukan nilai impedansi
diukur pada titik a-b tersebut saat semua sumber di non aktifkan dengan cara
diganti dengan tahanan dalamnya (untuk sumber tegangan bebas diganti


rangkaian short circuit dan untuk sumber arus bebas diganti dengan rangkaian
open circuit)
(Zab = Zth).
4. Jika terdapat sumber tak bebas, maka untuk mencari nilai impedanso pengganti
Theveninnya didapatkan dengan cara
Zth=Vth/Ith
5. Untuk mencari Isc pada terminal titik a-b tersebut dihubungsingkatkan dan
dicari arus yang mengalir pada titik tersebut (Iab = Isc).
6. Gambarkan kembali rangkaian pengganti Theveninnya, kemudian pasangkan
kembali komponen yang tadi dilepas dan hitung parameter yang ditanyakan.





Teorema Norton
Pada teorema ini berlaku bahwa :
Suatu rangkaian listrik dapat disederhanakan dengan hanya terdiri dari satu buah
sumber arus yang dihubungparalelkan dengan sebuah impedansi ekivelennya pada dua
terminal yang diamati.
Tujuan untuk menyederhanakan analisis rangkaian, yaitu dengan membuat rangkaian
pengganti yang berupa sumber arus yang diparalel dengan suatu impedansi ekivalennya.


Langkah-langkah penyelesaian dengan teorema Norton :
1. Cari dan tentukan titik terminal a-b dimana parameter yang ditanyakan.
2. Lepaskan komponen pada titik a-b tersebut, short circuit kan pada terminal a-b
kemudian hitung nilai arus dititik a-b tersebut (Iab = Isc = IN).
3. Jika semua sumbernya adalah sumber bebas, maka tentukan nilai impedansi
diukur pada titik a-b tersebut saat semua sumber di non aktifkan dengan cara
diganti dengan tahanan dalamnya (untuk sumber tegangan bebas diganti
rangkaian short circuit dan untuk sumber arus bebas diganti dengan rangkaian
open circuit)
(Zab = ZN = Zth).
4. Jika terdapat sumber tak bebas, maka untuk mencari nilai tahanan pengganti
Nortonnya didapatkan dengan cara
ZN=Voc/IN
5. Untuk mencari Voc pada terminal titik a-b tersebut dibuka dan dicari tegangan
pada titik tersebut (Vab = Voc).
6. Gambarkan kembali rangkaian pengganti Nortonnya, kemudian pasangkan
kembali komponen yang tadi dilepas dan hitung parameter yang ditanyakan.
















Tidak ada komentar:

Posting Komentar